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Abstract. The nature of the paramagnetic-insulator-to-ferromagnetic-metal transition and the
associated colossal magnetoresistance (CMR) in doped manganites is re-investigated on the basis
of the double-exchange model by using a Monte Carlo technique. We calculate the temperature
dependence of the magnetic susceptibility and resistivity by taking account of the magnetic
fluctuation together with the long-range hopping correlation. The results show Curie–Weiss
behaviour of the susceptibility, consistent with a sharp peak in the resistivity near the Curie
temperature Tc . The estimated value of Tc and the magnitude of the CMR in the magnetic field
are in good agreement with experiments. Our results clearly demonstrate the importance of the
magnetic fluctuation and the long-range hopping correlation in the CMR manganites.

1. Introduction

The recent observation of colossal magnetoresistance (CMR) in mixed-valence manganites
has led to there being a great deal of interest in achieving an understanding of their unusual
magnetotransport properties [1]. One of the most prominent features of these materials is
a close relationship between the metal–insulator (MI) and ferromagnetic-to-paramagnetic
transitions. The generic behaviour is well understood within the framework of the double-
exchange (DE) theory [2], where the spin–spin correlation between the localized spins is crucial
to determining the amplitude for hopping of the conduction electrons between neighbours and,
in particular, the resistivity (ρ) near the Curie temperature, Tc [3]. In previous studies, however,
even though it was considered to be responsible for the insulating behaviour, i.e., dρ/dT < 0,
in the paramagnetic state, the spatial spin correlation was not treated properly, so the MI
transition and the associated CMR near Tc could not be understood within mean-field-type
approaches [4, 5].

Recently Millis et al [6] argued that DE model alone is not enough to explain a
sharp change in ρ near Tc and proposed that the lattice polaron formation arising from
the dynamic Jahn–Teller distortion is essential for the MI transition and CMR. Despite the
efforts made in [7, 8], the lattice polaron view has not been successful in explaining the
enormous drop of magnetoresistance. Although the Jahn–Teller distortion is quite important
for the understanding of overall trends in the manganite physics, there has been an increasing
realization [9–12] that lattice polaron formation is not sufficient to explain the transport
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properties in connection with the CMR phenomena. On the other hand, there are numerous
reports [14–17] on the importance of the magnetic polaron formation caused by the spin-
disorder scattering inherent to the DE model. According to this scattering mechanism, the
charge carriers moving in the slowly fluctuating spin background form magnetic polarons
around Tc due to the robust fluctuation in the spin correlation, 〈 �Si · �Sj 〉. Several authors [3–5]
also suggested a possible crucial role of the spin fluctuations in the resistivity and the CMR
phenomena near and above Tc. However, in these works [3–5, 14–17] the importance of the
magnetic fluctuations in the long-range hopping correlations has not been fully appreciated.

In this paper, we report the results of our studies on the temperature dependence of the
resistivity, taking account of the magnetic fluctuations together with the long-range hopping
correlations. In order to include the effects of the fluctuations of the localized t2g spins of
Mn atoms, we adopt an unbiased Monte Carlo method [17–19] on a three-dimensional (3D)
DE system. From the results, it is shown that the resistivity from the long-range hopping
calculation has a sharp peak near Tc and decreases exponentially above Tc with increasing
temperature in the paramagnetic phase. The magnitudes of both the magnetoresistance ratio
and the estimated Tc are in good agreement with experimental observations. This is the
first result demonstrating the importance of magnetic fluctuations and the long-range hopping
correlations in CMR manganites.

2. Model and calculations

The following simplified model Hamiltonian for understanding the doped manganites is a
single-orbital DE Hamiltonian with a magnetic field [2, 6]:

H = −
∑
〈ij〉

(tij c
+
i cj + h.c.) − h

∑
i

Sz
i − µ

∑
i

c+
i ci (1)

where the operator c+
i creates a spinless conduction electron at site �Ri , �Si refers to the localized

t2g spins, h is an external magnetic field, and µ is the chemical potential. In the limit of strong
Hund’s coupling the hopping amplitude is given by

tij = t

(
cos

θi

2
cos

θj

2
+ sin

θi

2
sin

θj

2
ei(φi−φj )

)
(2)

with the polar angles {θi, φi} characterizing the orientation of the localized spin:

�Si = S(sin θi cosφi x̂ + sin θi sin φi ŷ + cos θi ẑ).

For simplicity, we assume that the azimuthal angle φi rotates independently [6]. Thus, it is
possible to rewrite tij in the familiar form tij = t cos(θij /2). The calculation of the partition
function of the present model is based on a finite-temperature Monte Carlo technique intro-
duced by Yunoki et al [18]. Indeed, this method has been successfully applied in the study
of the phase separation [18, 19] and the magnetic phase diagram of the electronic model
for manganites [17]. Thermodynamic quantities of interest are obtained directly from the
ensemble average of the spin configurations and the eigenvalues of the Hamiltonian. The
actual calculations were performed for L = 6 and L = 4 cubic lattices with periodic boundary
conditions. The carrier density 〈n〉 ≈ 0.5, i.e., the hole density x = 1 −〈n〉; this was obtained
by fixing µ = 0.0. Unless stated otherwise, we take t = 1, |S| = 1, and L = 6.
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3. Monte Carlo results

3.1. Ferromagnetic-to-paramagnetic transition near Tc

Figure 1 shows the temperature dependence of the magnetization:

M ≡
〈 ∑

i

Sz
i

〉/
L3

denoted by solid circles and the corresponding magnetic susceptibility:

χ ≡ (〈M2〉 − 〈M〉2)/kBT

represented by open squares. As clearly seen in figure 1, the calculated χ shows a steep peak
near Tc in accord with the onset of the ferromagnetic transition. The dashed line is a mean-field
prediction of χ ∼ 〈S2〉/(T − Tc) in terms of the magnetic polaron formation [14, 15] caused
by the spin-disorder scattering. The Curie–Weiss behaviour of χ allows us to extrapolate
the mean-field value of Tc: it is 0.13t , which is consistent with the results from the high-
temperature expansions [13] as well as other theoretical methods [14–18]. If we take values
of the bandwidth between 0.1 and 0.3 eV from the literature [4, 18], our estimate for Tc lies
between 150 and 450 K, which coincides with the range observed experimentally. In contrast,
the previous estimate [6] of Tc ≈ 0.3 eV ≈ 3600 K was much higher due to the neglect
of the thermal fluctuation effect [4] as well as the large value of the exchange spin coupling
J ∼ 0.1 eV used for the 3D Heisenberg ferromagnet model. Indeed, recent study [20] of
the spin-wave dispersion for La0.7Pb0.3MnO3 (Tc = 355 K) evaluated J ∼ 0.002 eV and
Tc ≈ 410 K. Therefore, it is evident that the DE model alone can account for the value of Tc,
the Curie–Weiss behaviour of χ , and a sharp drop of the magnetization near Tc.
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Figure 1. Magnetization M and magnetic susceptibility χ ≡ (〈M2〉 − 〈M〉2)/T as functions of
temperature. The dashed line is a mean-field prediction for χ of the form 〈S2〉/(T − Tc) from
reference [13].

Figure 2 shows the temperature dependence of the average hopping integral 〈tij 〉 =
〈cos(θij /2)〉 for the Monte Carlo simulation and the mean-field prediction [3] in the limit
of S = ∞. We see that the Monte Carlo data for 〈tij 〉 are a smooth and continuous function of
temperature for the whole range of T . Note, however, that 〈tij 〉 varies even in the spin-disorder
regime and, in particular, the curvature, i.e., ∂2〈tij 〉/∂T 2, changes sign near Tc which is at
variance with the mean-field prediction. This result implies that a hopping fluctuation has a
maximum as the curvature approaches zero in the vicinity of Tc since it is related to the second
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Figure 2. The temperature dependence of the hopping integral 〈tij 〉 = 〈cos(θij /2)〉 for the Monte
Carlo and the mean-field predictions. Tc is indicated by a downwards-pointing arrow.

derivative of M via the DE mechanism, leading to a sharp peak in χ(Tc) as shown in figure 1.
In other words, the carriers are trapped by spin-disorder scattering in the spatially fluctuating
hopping potential due to local deviations of the ferromagnetic surroundings, thereby producing
a localization in the paramagnetic phase [11, 14]. In the high-temperature limit of T ∼ 3Tc,
we obtain the 〈tij 〉 = 2/3, leading to the reduction of the effective bandwidth in the density of
states [26].

3.2. Resistivity in the absence of hopping correlation

The resistivity can be determined by using the phenomenological theory of the Drude formula
ρ = m∗/xe2τ , where x is the concentration of hole carriers, m∗ is the effective mass of a
carrier, and τ is the relaxation time. In the DE model, 1/m∗ is set by the effective bandwidth
proportional to 〈tij 〉. Kubo and Ohata [3] adopted an approximation for the imaginary part
of the electron self-energy !, in the presence of the spatially fluctuating random potential U
caused by the spin-disorder scattering:

1

τ
= Im ! ≈ 1

2m∗kBT

〈(
∂U

∂tij

)2
〉
τc (3)

where τc is the characteristic time in which the coherent random force persists. The random
potential of mainly magnetic origin is closely related to the fluctuation of the hopping integral
due to the DE mechanism induced by the spin-disorder scattering. For instance, in the presence
of strong Hund’s rule coupling JH , the random potential arising from the spin-flip scattering
of the form −JH

�S · �σ between localized Mn t2g spins and the spins of the eg electrons [11]
can be written as U ∼ JHS(1 − cos(θij )), where θij is the angle between the spins of the
two Mn ions.

According to the phenomenological study of Kubo and Ohata [3], 〈(∂U/∂tij )
2〉 can

probably be replaced by 〈(%tij kF )
2〉, where %tij is the fluctuation of the hopping integral

defined as %tij ≡ t[cos(θij /2) − 〈cos(θij /2)〉]. In our problems, kBT may be replaced by EF

and τc by am∗/kF , where a is a lattice constant and kF is the Fermi wave vector. The resulting
resistivity is estimated as

ρ ∼ a

xe2kF

〈(tij )2〉 − 〈tij 〉2

〈tij 〉2
. (4)
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Within this phenomenological treatment, Kubo and Ohata showed that the resistivity behaves
as ρ ∼ 1−M2 within the framework of the molecular-field approximation, which is consistent
with the recent dynamic mean-field theory given by Furukawa [4]. These results qualitatively
help us to understand the ferromagnetic metallic state of the DE model via a spin-disorder
scattering mechanism.

To study the hopping-fluctuation effects in the vicinity of Tc, we plot the T -dependence
of the resistivity as a function of T/Tc for the Monte Carlo and the mean-field calculations in
figure 3. We see that the resistivity from the Monte Carlo calculation shows a similar behaviour
to that from the mean-field calculation below and above Tc. A small peak structure of the Monte
Carlo calculation of ρ at temperature very close to Tc must come from the fluctuation effects
of the background localized spins which are ignored in the mean-field calculation. However,
the present results fail to reproduce the experimental observations of the insulating behaviour
with dρ/dT < 0 in the paramagnetic state. One reason for the discrepancy between this
phenomenological theory and experiments is that the effects of the shortest hopping correlation
and its fluctuation are not sufficient to trap the charge carriers in the conduction bands above Tc.
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Figure 3. The T -dependence of the resistivity in the absence of the hopping correlation from
equation (4) for mean-field and Monte Carlo calculations.

3.3. Long-range hopping correlation and resistivity

Since a finite-range ferromagnetic spin correlation persists even above Tc, however, the
contribution from long-range hopping correlations to the spin-disorder scattering which is
responsible for the carrier localization cannot be entirely ignored in our problems. Thus, we
may conjecture that the inverse relaxation time can be written as

1

τ
≈ a

kF 〈tij 〉

〈 ∑
δ1,δ2,i,R

%ti,i+δ1 %ti+R,i+R+δ2

〉
= a

kF 〈tij 〉 (* − 〈tij 〉2) (5)

where * is the long-range hopping correlation defined as

* ≡ 1

(3L3)2

〈 ∑
δ1,δ2

∑
i,R

ti,i+δ1 ti+R,i+R+δ2

〉
. (6)

HereR represents sites on the 3D lattice, and δ1 and δ2 are the unit vectors connecting its nearest-
neighbour sites. In the presence of the long-range hopping correlation, the corresponding



5458 Hongsuk Yi et al

resistivity is written as

ρ ≈ a

xe2kF

* − 〈tij 〉2

〈tij 〉2
. (7)

It is worth noting that this formula is nothing but the generalization of equation (4), implying
that the fluctuation of the hopping correlation defined as %* ≡ * − 〈tij 〉2 localizes the charge
carriers moving in a fluctuating spin background in the paramagnetic state.

Figure 4(a) shows the T -dependence of * and 〈tij 〉2 near and above Tc. Since the spatial
hopping correlation is greater than the 〈tij 〉2, this allows us to measure the fluctuation of the
hopping correlation %*. The temperature dependence of %* is shown in figure 4(b). The
fluctuation reaches a maximum very close to Tc and is reduced more rapidly below and above
Tc. This behaviour is closely related to the peak structure of the relaxation time and the
resistivity.
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Figure 4. (a) The long-range hopping correlation * and 〈tij 〉2 in the vicinity of Tc (see the text).
(b) The temperature dependence of the long-range hopping correlation defined as %* ≡ *−〈tij 〉2.
The dashed lines indicate Tc .

The T -dependence of the corresponding ρ and τ−1 in the long-range hopping regime is
shown in figure 5. With increasing temperature, the curves for ρ and τ−1 each increase to a
maximum near Tc (marked as a dashed line) and then decrease above Tc. The rapid decrease
of ρ below Tc and the insulating behaviour (dρ/dT < 0) above Tc are in good agreement
with experiments. Similar behaviours are obtained from the simulation with different doping
levels. Moreover, the resistivity shown in the inset of figure 5 follows the Mott variable-range
hopping law ρ = ρ0 exp((T0/T )1/4) in the semiconducting region [21]. A detailed study of the
resistivity above Tc made by putting together experimental measurements for La1−xCaxMnO3

single crystals and the present Monte Carlo results will be published elsewhere [22]. From
the slope of the fitting curve, we estimate the localization length, which is the size of the large
bound magnetic polaron, to be 8 Å from kBT0 = 24/(πN(EF )ξ

3) [11, 14, 21]. This value
of ξ is physically plausible, since it exceeds the average Mn3+–Mn4+ spacing of about 4 Å.
Thus it is argued that a simple physical picture in accord with our Monte Carlo studies is that
of carrier localization due to the fluctuation of the long-range hopping correlation induced by
fluctuating spin backgrounds. However, more precise determination for ξ requires a finite-size
scaling analysis, which is beyond the scope of this work due to the computational limitations.
Indeed, there is some finite-size effect in the calculated M above Tc [23].
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Figure 5. The T -dependence of the resistivity and the relaxation time in the long-range hopping
regime. The dashed lines indicate Tc . In the inset, we show ln(ρ) versus (Tc/T )1/4.

3.4. Colossal magnetoresistance

For completeness, we study the effect of the magnetic field on the MI transition and CMR
phenomena. The temperature dependence of the resistivity, i.e., ρ ≈ %*/〈tij 〉2, for zero
magnetic field and h = 0.02 for L = 6 are shown in figure 6. Note that the estimate of the
magnetic field h = 0.01t corresponds to 5 T if we take t = 0.2 eV for Tc ≈ 300 K. The applied
magnetic field greatly reduces the resistivity peak around Tc and drives its transition to a higher
temperature due to the suppression of the spin-disorder scattering. The magnetoresistance
obtained, defined as %ρ/ρ ≡ (ρ(0) − ρ(h))/ρ(0), at Tc = 0.13t is about 70% which is in
good agreement with the experimental observation.
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Figure 6. ρ versus T for several values of the magnetic fields and L = 4. In the inset, we show
the magnetoresistance ratio, %ρ/ρ, as a function of T for various values of the magnetic field.

Similar results are also obtained for smaller systems with L = 4. We plot the
T -dependence of the resistivity for different values of the magnetic field in the inset of
figure 6. The maximum magnetoresistance obtained here, %ρ/ρ ≈ 54%, 86%, and 94% for
h = 0.01, 0.03, and 0.05, respectively, compares well with most experimental measurements.
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4. Discussion

It is interesting to compare our Monte Carlo results with recent calculations of Ishizaka and
Ishihara [5] and Millis et al [6] since they used an expression similar to equation (7) except
that they derived a four-spin correlation instead of %*. The four-spin correlation obtained
from the lowest-order perturbational treatment within the memory function method [24,25] is
written as

%C ≈
∑
〈ij〉,R

〈�Si · �Sj
�Si+R · �Sj+R〉B(R) (8)

where B(R) is the decaying oscillatory function. To have a better understanding of which
spatial correlation function is responsible for the observed resistivity behaviour, we reproduce
%C obtained through Monte Carlo calculations and compare the result with %* shown in
figure 4. The temperature dependence of the correlation functions normalized by the values
at the peak position, %C/%Cpeak and %*/%*peak , are plotted in figure 7. %C shows an
anomalous peak far below Tc while %* shows a clear peak near Tc. A similar upturn behaviour
in %C has been reproduced by different methods, e.g., the Schwinger boson approach [5] and
the spherical model approximation [6].
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Figure 7. The spatial four-spin and long-range hopping correlations normalized by the values at
the peak position, %C/%Cpeak and %*/%*peak , respectively. The inset shows the normalized
%C/%C(Tc) for zero magnetic field and for a field of h = 0.01 for L = 4. The dashed lines
indicate Tc .

It is well known that the correlation function responsible for the transport property is
greatly reduced under a magnetic field since it suppresses the spin-disorder scattering of the
carriers. To investigate the influence of the magnetic field on the four-spin correlation function,
we plot the normalized %C/%C(Tc) as a function of T for zero magnetic field and h = 0.01
for L = 4 in the inset of figure 7. However, %C under the magnetic field does not show
a large reduction in the robust ferromagnetic state, even for T � Tc, or a shift of the peak
position to higher temperature. In other words, the four-spin correlation is not directly related
to the resistivity of the DE model via a spin-disorder scattering mechanism, or more precisely
magnetic polaron formation.

In fact, on the basis of the result for %C, Millis et al [6] showed that the resistivity is
still increased below Tc with decreasing T and, taking this together with the overestimated
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mean-field Tc as discussed above, they suggested that an additional physical mechanism,
such as lattice polaron formation, is necessary to reproduce the observed resistivity and CMR
phenomena. Unlike the previous results of references [5] and [6], however, our calculations of
%*, 1/τ , andρ are remarkably consistent with the experimental observations. The discrepancy
between the present and the earlier works is attributable to the unusual upturn behaviour in
%C shown in figure 7, which may be an artifact of the perturbational treatment or memory
function method, because the spin correlation, 〈 �Si · �Sj 〉, shows no anomaly in the temperature
region of interest [15, 18].

It is also worth noting that Calderón et al [26] calculated the conductance by utilizing a
different Monte Carlo method with the Kubo formula. They found an absence of insulating
behaviour above Tc for x > 0.1, and that the system is metallic for all temperatures. This
result is similar to the previous mean-field results obtained by Furukawa [4] and Kubo and
Ohata [3] as well as our Monte Carlo results for the shortest hopping correlation of scattering,
i.e., �Ri = 0. However, the physical mechanism leading to the T -dependence of the resistivity
in the paramagnetic state is completely different from our result. The driving source of the
localization in our Monte Carlo calculation is the combined effect of the hopping fluctuation
and its long-range correlation. Indeed, some authors [3, 5, 25] point out that the contribution
from %* for �Ri �= 0 cannot be neglected in the vicinity of Tc and may be responsible for a
decrease in resistivity above Tc. On the other hand, the local spin-fluctuation effect is fully
taken into account in reference [23]; however, the fluctuation effects of the long-range hopping
correlation are completely ignored in their results. Without any additional degrees of freedom
such as electron–lattice coupling, our numerical studies clearly demonstrate that a spin-disorder
scattering induced by a long-range hopping correlation and its fluctuation is a possible origin
of the metal–insulator transition and the associated CMR phenomena in doped manganites.

5. Summary

In summary, we investigated the driving mechanism of the MI transition within the DE model
by taking account of the spin fluctuation and the long-range hopping correlation using a Monte
Carlo technique. The calculated T -dependence of the resistivity shows a sharp peak near Tc as
well as an insulating behaviour above Tc, which are consistent with experimental observations.
The estimated Tc-value and the magnitude of the CMR in the magnetic field are in good
agreement with experimental results. We suggest that the long-range hopping correlation is
important in understanding the transport properties of the CMR manganites, and furthermore
claim that the CMR phenomenon is probably related to the magnetic polaron formation driven
by the spin-disorder scattering. We hope that our results stimulate a wider discussion and more
experimental investigation in this direction.
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